Gujarati
1.Relation and Function
normal

Let $N$ be the set of positive integers. For all $n \in N$, let $f_n=(n+1)^{1 / 3}-n^{1 / 3} \text { and }$ $A=\left\{n \in N: f_{n+1}<\frac{1}{3(n+1)^{2 / 3}} < f_n\right\}$ Then,

A

$A=N$

B

$A$ is a finite set

C

the complement of $A$ in $N$ is nonempty, but finite

D

$A$ and its complement in $N$ are both infinite

(KVPY-2019)

Solution

(a)

It is given that for $n \in N$

$f_n=(n+1)^{1 / 3}-n^{1 / 3}\,(n+1)-n$

$(n+1)^{2/3}+(n+1)^{23} n^{2/3}+n^{2/3}$

$3 n^{2 / 3} < (n+1)^{2 / 3}+(n+1)^{2/3} n^{2/3}+n^{2/3} < 3(n+1)^{2 / 3}$

$\Rightarrow \frac{1}{3(n+1)^{2/3}} <  \frac{1}{(n+1)^{2 / 3}+(n+1)^{2 / 3} n^{2/3}+n^{2/3}} < \frac{1}{3 n^{2/3}}$

$\frac{1}{3(n+1)^{2/3}} < f_n < \frac{1}{3 n^{2/3}}$

Similarly,

$\frac{1}{3(n+2)^{23}} < f_{n+1} < \frac{1}{3(n+1)^{23}}$

$\therefore \quad f_{n+1} < \frac{1}{3(n+1)^{23}} < f_{n+1}, \forall n \in N$

So, $\operatorname{set} A=N$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.