The range of the function $f(x){ = ^{7 - x}}{\kern 1pt} {P_{x - 3}}$ is
$\{1, 2, 3, 4, 5\}$
$\{1, 2, 3, 4, 5, 6\}$
$\{1, 2, 3, 4\}$
$\{1, 2, 3\}$
Show that the function $f : R \rightarrow R$ given by $f ( x )= x ^{3}$ is injective.
If a function $g(x)$ is defined in $[-1, 1]$ and two vertices of an equilateral triangle are $(0, 0)$ and $(x, g(x))$ and its area is $\frac{\sqrt 3}{4}$ , then $g(x)$ equals :-
The maximum value of function $f(x) = \int\limits_0^1 {t\,\sin \,\left( {x + \pi t} \right)} dt,\,x \in \,R$ is
If $f( x + y )=f( x ) f( y )$ and $\sum \limits_{ x =1}^{\infty} f( x )=2, x , y \in N$ where $N$ is the set of all natural numbers, then the value of $\frac{f(4)}{f(2)}$ is
Let $f(x) = {\cos ^{ - 1}}\left( {\frac{{2x}}{{1 + {x^2}}}} \right) + {\sin ^{ - 1}}\left( {\frac{{1 - {x^2}}}{{1 + {x^2}}}} \right)$ then the value of $f(1) + f(2)$, is -