If $\tan \,n\theta = \tan m\theta $, then the different values of $\theta $ will be in

  • A

    $A.P.$

  • B

    $G.P.$

  • C

    $H.P.$

  • D

    None of these

Similar Questions

Let $AP ( a ; d )$ denote the set of all the terms of an infinite arithmetic progression with first term a and common difference $d >0$. If $\operatorname{AP}(1 ; 3) \cap \operatorname{AP}(2 ; 5) \cap \operatorname{AP}(3 ; 7)=\operatorname{AP}( a ; d )$ then $a + d$ equals. . . . .

  • [IIT 2019]

In an $A.P.,$ the first term is $2$ and the sum of the first five terms is one-fourth of the next five terms. Show that $20^{th}$ term is $-112$

For three positive integers $p , q , r , x ^{ pq p ^2}= y ^{ qr }= z ^{ p ^2 r }$ and $r=p q+1$ such that $3,3 \log _y x, 3 \log _z y, 7 \log _x z$ are in A.P. with common difference $\frac{1}{2}$. Then $r - p - q$ is equal to

  • [JEE MAIN 2023]

For $\mathrm{x} \geq 0$, the least value of $\mathrm{K}$, for which $4^{1+\mathrm{x}}+4^{1-\mathrm{x}}$, $\frac{\mathrm{K}}{2}, 16^{\mathrm{x}}+16^{-\mathrm{x}}$ are three consecutive terms of an $A.P.$ is equal to :

  • [JEE MAIN 2024]

The number of common terms in the progressions $4,9,14,19, \ldots \ldots$, up to $25^{\text {th }}$ term and $3,6,9,12$, up to $37^{\text {th }}$ term is :

  • [JEE MAIN 2024]