If $a,\;b,\;c$ are ${p^{th}},\;{q^{th}}$ and ${r^{th}}$ terms of a $G.P.$, then ${\left( {\frac{c}{b}} \right)^p}{\left( {\frac{b}{a}} \right)^r}{\left( {\frac{a}{c}} \right)^q}$ is equal to
$1$
${a^p}{b^q}{c^r}$
${a^q}{b^r}{c^p}$
${a^r}{b^p}{c^q}$
If ${s_n} = 1 + \frac{1}{2} + \frac{1}{{{2^2}}} + ........ + \frac{1}{{{2^{n - 1}}}}$ , then the least integral value of $n$ such that $2 - {s_n} < \frac{1}{{100}}$ is
The sum of infinite terms of the geometric progression $\frac{{\sqrt 2 + 1}}{{\sqrt 2 - 1}},\frac{1}{{2 - \sqrt 2 }},\frac{1}{2}.....$ is
The product $(32)(32)^{1/6}(32)^{1/36} ...... to\,\, \infty $ is
The greatest integer less than or equal to the sum of first $100$ terms of the sequence $\frac{1}{3}, \frac{5}{9}, \frac{19}{27}, \frac{65}{81}, \ldots \ldots$ is equal to
If the ${4^{th}},\;{7^{th}}$ and ${10^{th}}$ terms of a $G.P.$ be $a,\;b,\;c$ respectively, then the relation between $a,\;b,\;c$ is