If three geometric means be inserted between $2$ and $32$, then the third geometric mean will be
$8$
$4$
$16$
$12$
The $4^{\text {tht }}$ term of $GP$ is $500$ and its common ratio is $\frac{1}{m}, m \in N$. Let $S_n$ denote the sum of the first $n$ terms of this GP. If $S_6 > S_5+1$ and $S_7 < S_6+\frac{1}{2}$, then the number of possible values of $m$ is $..........$
Let ${A_n} = \left( {\frac{3}{4}} \right) - {\left( {\frac{3}{4}} \right)^2} + {\left( {\frac{3}{4}} \right)^3} - ..... + {\left( { - 1} \right)^{n - 1}}{\left( {\frac{3}{4}} \right)^n}$ and $B_n \,= 1 - A_n$ . Then, the least odd natural number $p$ , so that ${B_n} > {A_n}$, for all $n \geq p$ is
If $\frac{{a + bx}}{{a - bx}} = \frac{{b + cx}}{{b - cx}} = \frac{{c + dx}}{{c - dx}},\left( {x \ne 0} \right)$ then $a$, $b$, $c$, $d$ are in
Suppose four distinct positive numbers $a_1, a_2, a_3, a_4$ are in $G.P.$ Let $b_1=a_1, b_2=b_1+a_2, b_3=b_2+a_3$ and $b_4=b_3+a_4$.
$STATEMENT-1$ : The numbers $\mathrm{b}_1, \mathrm{~b}_2, \mathrm{~b}_3, \mathrm{~b}_4$ are neither in $A.P$. nor in $G.P.$ and
$STATEMENT-2$ : The numbers $\mathrm{b}_1, \mathrm{~b}_2, \mathrm{~b}_3, \mathrm{~b}_4$ are in $H.P.$
The product of three geometric means between $4$ and $\frac{1}{4}$ will be