How many terms of the $G.P.$ $3, \frac{3}{2}, \frac{3}{4}, \ldots$ are needed to give the sum $\frac{3069}{512} ?$
If $1 + \cos \alpha + {\cos ^2}\alpha + .......\,\infty = 2 - \sqrt {2,} $ then $\alpha ,$ $(0 < \alpha < \pi )$ is
The sum of first two terms of a $G.P.$ is $1$ and every term of this series is twice of its previous term, then the first term will be
The value of ${a^{{{\log }_b}x}}$, where $a = 0.2,\;b = \sqrt 5 ,\;x = \frac{1}{4} + \frac{1}{8} + \frac{1}{{16}} + .........$to $\infty $ is
Find the sum of the following series up to n terms:
$5+55+555+\ldots$