If ${\log _x}a,\;{a^{x/2}}$ and ${\log _b}x$ are in $G.P.$, then $x = $

  • A

    $ - \log ({\log _b}a)$

  • B

    $ - {\log _a}({\log _a}b)$

  • C

    ${\log _a}({\log _e}a) - {\log _a}({\log _e}b)$

  • D

    ${\log _a}({\log _e}b) - {\log _a}({\log _e}a)$

Similar Questions

The sum to infinity of the progression $9 - 3 + 1 - \frac{1}{3} + .....$ is

Find the sum to indicated number of terms in each of the geometric progressions in $\left.1,-a, a^{2},-a^{3}, \ldots n \text { terms (if } a \neq-1\right)$

Find the $12^{\text {th }}$ term of a $G.P.$ whose $8^{\text {th }}$ term is $192$ and the common ratio is $2$

$\alpha ,\;\beta $ are the roots of the equation ${x^2} - 3x + a = 0$ and $\gamma ,\;\delta $ are the roots of the equation ${x^2} - 12x + b = 0$. If $\alpha ,\;\beta ,\;\gamma ,\;\delta $ form an increasing $G.P.$, then $(a,\;b) = $

$0.14189189189….$ can be expressed as a rational number