Gujarati
8. Sequences and Series
medium

If ${p^{th}},\;{q^{th}},\;{r^{th}}$ and ${s^{th}}$ terms of an $A.P.$ be in $G.P.$, then $(p - q),\;(q - r),\;(r - s)$ will be in

A

$G.P.$

B

$A.P.$

C

$H.P.$

D

None of these

Solution

(a) If $a$ and $d$ be the first term and common difference of the $A.P.$

Then ${T_p} = a + (p – 1)d,\;$

${T_q} = a + (q – 1)d$

and ${T_r} = a + (r – 1)d$.

If ${T_p},\;{T_q},\;{T_r}$ are in $G.P.$

Then its common ratio $R = \frac{{{T_q}}}{{{T_p}}} = \frac{{{T_r}}}{{{T_q}}} = \frac{{{T_q} – {T_r}}}{{{T_p} – {T_q}}}$

$ = \frac{{[a + (q – 1)d] – [a + (r – 1)d]}}{{[a + (p – 1)d] – [a + (q – 1)d]}} = \frac{{q – r}}{{p – q}}$

Similarly, we can show that $R = \frac{{q – r}}{{p – q}} = \frac{{r – s}}{{q – r}}$

Hence $(p – q),\;(q – r),\;(r – s)$ be in $G.P.$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.