Gujarati
8. Sequences and Series
hard

If $a,\;b,\;c$ are in $A.P.$, $b,\;c,\;d$ are in $G.P.$ and $c,\;d,\;e$ are in $H.P.$, then $a,\;c,\;e$ are in

A

No particular order

B

$A.P.$

C

$G.P.$

D

$H.P.$

Solution

(c) $a,\;b,\;c$ are in $A.P.$ then $2b = a + c$…..$(i)$

$b,\;c,\;d$ are in $G.P. $ then ${c^2} = bd$….$(ii)$

$c,\;d,\;e$ are in $H.P.$ then $d = \frac{{2ce}}{{c + e}}$….$(iii)$

From $(ii)$, $c^2=bd={(a+c)\over 2}{2ce\over(c+e)}$

$ \Rightarrow $ ${c^2} = \frac{{ace + {c^2}e}}{{c + e}}$

$\Rightarrow {c^3} + {c^2}e = ace + {c^2}e$

$ \Rightarrow $ ${c^3} = ace$

$\Rightarrow {c^2} = ae$

Hence $a,\;c,\;e$ will be in $G.P.$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.