- Home
- Standard 11
- Mathematics
8. Sequences and Series
hard
If $a,\;b,\;c$ are in $A.P.$, $b,\;c,\;d$ are in $G.P.$ and $c,\;d,\;e$ are in $H.P.$, then $a,\;c,\;e$ are in
A
No particular order
B
$A.P.$
C
$G.P.$
D
$H.P.$
Solution
(c) $a,\;b,\;c$ are in $A.P.$ then $2b = a + c$…..$(i)$
$b,\;c,\;d$ are in $G.P. $ then ${c^2} = bd$….$(ii)$
$c,\;d,\;e$ are in $H.P.$ then $d = \frac{{2ce}}{{c + e}}$….$(iii)$
From $(ii)$, $c^2=bd={(a+c)\over 2}{2ce\over(c+e)}$
$ \Rightarrow $ ${c^2} = \frac{{ace + {c^2}e}}{{c + e}}$
$\Rightarrow {c^3} + {c^2}e = ace + {c^2}e$
$ \Rightarrow $ ${c^3} = ace$
$\Rightarrow {c^2} = ae$
Hence $a,\;c,\;e$ will be in $G.P.$
Standard 11
Mathematics