- Home
- Standard 11
- Mathematics
8. Sequences and Series
hard
If $2(y - a)$ is the $H.M.$ between $y - x$ and $y - z$, then $x - a,\;y - a,\;z - a$ are in
A
$A.P.$
B
$G.P.$
C
$H.P.$
D
None of these
Solution
(b) $y – x,\;2(y – a),\;(y – z)$ are in $H.P.$
$ \Rightarrow $ $\frac{1}{{y – x}},\;\frac{1}{{2(y – a)}},\;\frac{1}{{y – z}}$are in A.P.
$ \Rightarrow $ $\frac{1}{{2(y – a)}} – \frac{1}{{y – x}} = \frac{1}{{y – z}} – \frac{1}{{2(y – a)}}$
$ \Rightarrow $ $\frac{{2a – y – x}}{{y – x}} = \frac{{y + z – 2a}}{{y – z}}$
$ \Rightarrow $ $\frac{{(x – a)+ (y – a)}}{{(x – a) – (y -a)}} = \frac{{(y – a) + (z – a)}}{{(y – a) – (z – a)}}$
$ \Rightarrow $ $\frac{{x – a}}{{y – a}} = \frac{{y – a}}{{z – a}}$
(Applying componendo and dividendo)
$ \Rightarrow $ $x – a,\;y – a,\;z – a$ are in $G.P.$
Standard 11
Mathematics