- Home
- Standard 11
- Mathematics
Suppose four distinct positive numbers $a_1, a_2, a_3, a_4$ are in $G.P.$ Let $b_1=a_1, b_2=b_1+a_2, b_3=b_2+a_3$ and $b_4=b_3+a_4$.
$STATEMENT-1$ : The numbers $\mathrm{b}_1, \mathrm{~b}_2, \mathrm{~b}_3, \mathrm{~b}_4$ are neither in $A.P$. nor in $G.P.$ and
$STATEMENT-2$ : The numbers $\mathrm{b}_1, \mathrm{~b}_2, \mathrm{~b}_3, \mathrm{~b}_4$ are in $H.P.$
$STATEMENT-1$ is True, $STATEMENT-2$ is True; $STATEMENT-2$ is a correct explanation for $STATEMENT-1$
$STATEMENT-1$ is True, $STATEMENT-2$ is True; $STATEMENT-2$ is $NOT$ a correct explanation for $STATEMENT-1.$
$STATEMENT-1$ is True, $STATEMENT-2$ is False
$STATEMENT-1$ is False, $STATEMENT-2$ is True
Solution
$b_1=a_1, b_2=a_1+a_2, b_3=a_1+a_2+a_3, b_4=a_1+a_2+a_3+a_4$
Hence $b_1, b_2, b_3, b_4$ are neither in $A.P.$ nor in $G.P.$ nor in $H.P.$