Let the sequence ${a_1},{a_2},{a_3},.............{a_{2n}}$ form an $A.P. $ Then $a_1^2 - a_2^2 + a_3^3 - ......... + a_{2n - 1}^2 - a_{2n}^2 = $
$\frac{n}{{2n - 1}}(a_1^2 - a_{2n}^2)$
$\frac{{2n}}{{n - 1}}(a_{2n}^2 - a_1^2)$
$\frac{n}{{n + 1}}(a_1^2 + a_{2n}^2)$
None of these
If ${S_n}$ denotes the sum of $n$ terms of an arithmetic progression, then the value of $({S_{2n}} - {S_n})$ is equal to
Show that the sum of $(m+n)^{ th }$ and $(m-n)^{ th }$ terms of an $A.P.$ is equal to twice the $m^{\text {th }}$ term.
If the ${p^{th}},\;{q^{th}}$ and ${r^{th}}$ term of an arithmetic sequence are $a , b$ and $c$ respectively, then the value of $[a(q - r)$ + $b(r - p)$ $ + c(p - q)] = $
If $\frac{{3 + 5 + 7 + ..........{\rm{to}}\;n\;{\rm{terms}}}}{{5 + 8 + 11 + .........{\rm{to}}\;10\;{\rm{terms}}}} = 7$, then the value of $n$ is
If $\frac{1}{{b - c}},\;\frac{1}{{c - a}},\;\frac{1}{{a - b}}$ be consecutive terms of an $A.P.$, then ${(b - c)^2},\;{(c - a)^2},\;{(a - b)^2}$ will be in