If $a,\,b,\,c$ are in $A.P.$ and ${a^2},\,{b^2},{c^2}$ are in $H.P.$, then

  • A

    $a \ne b \ne c$

  • B

    ${a^2} = {b^2} = \frac{{{c^2}}}{2}$

  • C

    $a,\,b,\,c$ are in $G.P.$

  • D

    $\frac{{ - a}}{2},b,c$ are in $G.P$

Similar Questions

Sum of infinite number of terms in $G.P.$ is $20$ and sum of their square is $100$. The common ratio of $G.P.$ is

  • [AIEEE 2002]

If $1\, + \,\sin x\, + \,{\sin ^2}x\, + \,...\infty \, = \,4\, + \,2\sqrt 3 ,\,0\, < \,x\, < \,\pi $ then

If $a,\;b,\;c$ are ${p^{th}},\;{q^{th}}$ and ${r^{th}}$ terms of a $G.P.$, then ${\left( {\frac{c}{b}} \right)^p}{\left( {\frac{b}{a}} \right)^r}{\left( {\frac{a}{c}} \right)^q}$ is equal to

If in a geometric progression $\left\{ {{a_n}} \right\},\;{a_1} = 3,\;{a_n} = 96$ and ${S_n} = 189$ then the value of $n$ is

If $A = 1 + {r^z} + {r^{2z}} + {r^{3z}} + .......\infty $,  then the value of $r$ will be