The number $111..............1$ ($91$ times) is a
Even number
Prime number
Not prime
None of these
If the sum of an infinite $G.P.$ be $9$ and the sum of first two terms be $5$, then the common ratio is
The sum of infinity of a geometric progression is $\frac{4}{3}$ and the first term is $\frac{3}{4}$. The common ratio is
If $a,\;b,\;c$ are in $A.P.$, $b,\;c,\;d$ are in $G.P.$ and $c,\;d,\;e$ are in $H.P.$, then $a,\;c,\;e$ are in
For $0<\mathrm{c}<\mathrm{b}<\mathrm{a}$, let $(\mathrm{a}+\mathrm{b}-2 \mathrm{c}) \mathrm{x}^2+(\mathrm{b}+\mathrm{c}-2 \mathrm{a}) \mathrm{x}$ $+(c+a-2 b)=0$ and $\alpha \neq 1$ be one of its root. Then, among the two statements
$(I)$ If $\alpha \in(-1,0)$, then $\mathrm{b}$ cannot be the geometric mean of $\mathrm{a}$ and $\mathrm{c}$
$(II)$ If $\alpha \in(0,1)$, then $\mathrm{b}$ may be the geometric mean of $a$ and $c$
If $s$ is the sum of an infinite $G.P.$, the first term $a$ then the common ratio $r$ given by