જો ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + .... + {C_n}{x^n}$, તો ${C_0} + 2{C_1} + 3{C_2} + .... + (n + 1){C_n}$ = . . .
$(n + 2){2^{n - 1}}$
$(n + 1){2^n}$
$(n + 1){2^{n - 1}}$
$(n + 2){2^n}$
$(1-x)^{100}$ ના દ્વિપદી વિસ્તરણમાં પ્રથમ $50$ પદોના સહગુણકોનો સરવાળો $.......$ છે.
જો $n$ એ ધન પૂર્ણાક છે કે જેથી $n \ge 3$, હોય તો શ્રેણી $1 . n - \frac{{\left( {n\, - \,1} \right)}}{{1\,\,!}} (n - 1) + \frac{{\left( {n\, - \,1} \right)\,\,\left( {n\, - \,2} \right)}}{{2\,\,!}} (n - 2) $$- \frac{{\left( {n\, - \,1} \right)\,\,\left( {n\, - \,2} \right)\,\,\left( {n\, - \,3} \right)}}{{3\,\,!}} (n - 3) + ......$ ના $n$ પદોનો સરવાળો મેળવો
ધારો કે પૂર્ણાકો $n$ અને $r$ માટે $\left(\begin{array}{l} n \\ r \end{array}\right)=\left\{\begin{array}{ll}{ }^{n} C _{ r }, & \text { if } n \geq r \geq 0 \\ 0, & \text { otherwise }\end{array}\right.$ છે. તો સરવાળા $\sum_{i=0}^{k}\left(\begin{array}{c}10 \\ i\end{array}\right)\left(\begin{array}{c}15 \\ k-i\end{array}\right)+\sum_{i=0}^{k+1}\left(\begin{array}{c}12 \\ i\end{array}\right)\left(\begin{array}{c}13 \\ k+1-i\end{array}\right)$ નું અસ્તિત્વ હોય, તેવી $k$ ની મહત્તમ કિમત ...... છે.
જો ${\left( {1 - \frac{2}{x} + \frac{4}{{{x^2}}}} \right)^n},x \ne 0$ ના વિસ્તરણમાં પદોની સંખ્યા $28$ છે,તો આ વિસ્તરણમાંના બધાજ પદોના સહગુણકોનો સરવાળો . . . . છે.
${(x + y)^n}$ વિસ્તરણમાં સહગુણકોનો સરવાળો $4096$ છે , તો વિસ્તરણમાં મહતમ સહગુણક મેળવો.