यदि ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + .... + {C_n}{x^n}$, तो ${C_0} + 2{C_1} + 3{C_2} + .... + (n + 1){C_n}$ का मान होगा
$(n + 2){2^{n - 1}}$
$(n + 1){2^n}$
$(n + 1){2^{n - 1}}$
$(n + 2){2^n}$
यदि ${(1 + x + {x^2})^n}$ के विस्तार में ${x^r}$का गुणांक ${a_r}$ हो, तो ${a_1} - 2{a_2} + 3{a_3} - .... - 2n\,{a_{2n}} = $
$(1+x)^{101}\left(1+x^{2}-x\right)^{100}$ के $x$ की घातों में प्रसार में पदों की संख्या है
$^{4n}{C_0}{ + ^{4n}}{C_4}{ + ^{4n}}{C_8} + ....{ + ^{4n}}{C_{4n}}$ का मान है
मान $[ x ]$ महत्तम पूर्णांक $\leq x$ है। यदि $n \in N$ के लिए $,\left(1-x+x^{3}\right)^{n}=\sum_{j=0}^{3 n} a_{j} x^{j}$ है, तो $\sum_{j=0}^{\left[\frac{3 n}{2}\right]} a_{2 j}+4 \sum_{j=0}^{\left[\frac{3 n-1}{2}\right]} a_{2 j+1}$ बराबर है
यदि $a$ तथा $d$ दो सम्मिश्र संख्यायें हों, तब $a\,{C_0} - (a + d)\,{C_1} + (a + 2d)\,{C_2} - ........ + .....$ के $(n + 1)$ पदों का योग है