If ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + .... + {C_n}{x^n}$, then ${C_0}{C_2} + {C_1}{C_3} + {C_2}{C_4} + {C_{n - 2}}{C_n}$ equals
$\frac{{(2n)!}}{{(n + 1)!(n + 2)!}}$
$\frac{{(2n)!}}{{(n - 2)!(n + 2)!}}$
$\frac{{(2n)!}}{{(n)!(n + 2)!}}$
$\frac{{(2n)!}}{{(n - 1)!(n + 2)!}}$
If $1+\left(2+{ }^{49} C _{1}+{ }^{49} C _{2}+\ldots .+{ }^{49} C _{49}\right)\left({ }^{50} C _{2}+{ }^{50} C _{4}+\right.$ $\ldots . .+{ }^{50} C _{ so }$ ) is equal to $2^{ n } . m$, where $m$ is odd, then $n$ $+m$ is equal to.
Let $(1 + x)(1 + x + x^2)(1 + x + x^2 + x^3)\,\, ......\,\,$$(1 + x + x^2 + ..... + x^{30}) = $$a_0 + a_1x + a_2x^2$ .....$+$ $a_{465}x^{465}$, then sum of $a_0 + a_2 + a_4 + ......... +$ is
$\frac{{{C_0}}}{1} + \frac{{{C_2}}}{3} + \frac{{{C_4}}}{5} + \frac{{{C_6}}}{7} + ....$=
The sum of the series $\left( {\begin{array}{*{20}{c}}{20}\\0\end{array}} \right) - \left( {\begin{array}{*{20}{c}}{20}\\1\end{array}} \right)$$+$$\left( {\begin{array}{*{20}{c}}{20}\\2\end{array}} \right) - \left( {\begin{array}{*{20}{c}}{20}\\3\end{array}} \right)$$+…..-……+$$\left( {\begin{array}{*{20}{c}}{20}\\{10}\end{array}} \right)$
In the expansion of ${(1 + x)^5}$, the sum of the coefficient of the terms is