7.Binomial Theorem
medium

यदि ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + .... + {C_n}{x^n}$, तब ${C_0}{C_2} + {C_1}{C_3} + {C_2}{C_4} + {C_{n - 2}}{C_n}$ का मान होगा

A

$\frac{{(2n)!}}{{(n + 1)!(n + 2)!}}$

B

$\frac{{(2n)!}}{{(n - 2)!(n + 2)!}}$

C

$\frac{{(2n)!}}{{(n)!(n + 2)!}}$

D

$\frac{{(2n)!}}{{(n - 1)!(n + 2)!}}$

Solution

${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2}…. + {C_n}{x^n}$

${\left( {1 + \frac{1}{x}} \right)^n} = {C_0} + {C_1}.\frac{1}{x} + {C_2}.\frac{1}{{{x^2}}} + … + {C_n}\left( {\frac{1}{{{x^n}}}} \right)$

दोनों प्रसारों का गुणा करने पर

$\frac{{{{(1 + x)}^{2n}}}}{{{x^n}}} = \sum {C_0^2 + x\sum {{C_0}{C_1} + {x^2}\sum {{C_0}{C_2} + ….} } } $

$ + {x^r}\sum {{C_0}{C_r} + …..} $

$\frac{{{{(1 + x)}^{2n}}}}{{{x^n}}}$ के बायें पक्ष में $\sum {C_0^2 + x\sum {{C_0}{C_1} + {x^2}\sum {{C_0}{C_2} + ….} \sum {{C_0}{C_r}} } } $${x^0},x,{x^2},…..,{x^r}$ के गुणांक हैं या ${(1 + x)^{2n}}$ के प्रसार में ${x^n},{x^{n + 1}},{x^{n + 2}},…..,{x^{n + r}}$ के गुणांक हैं जो कि ${T_{n + 1,}}{T_{n + 2}},….$ से प्राप्त होते हैं व $^{2n}{C_n}{,^{2n}}{C_{n + 1}}{,^{2n}}{C_{n + 2}}{….^{2n}}{C_{n + r}}$ हैं।

$^{\,2n}{C_{n + 2}} = \frac{{(2\,n\,)\,!}}{{(n – 2)\,!\,(n + 2)\,!}}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.