यदि $\omega $ इकाई का सम्मिश्र घनमूल हो, तो  $\left| {\,\begin{array}{*{20}{c}}1&\omega &{ - {\omega ^2}/2}\\1&1&1\\1&{ - 1}&0\end{array}\,} \right| = $

  • A

    $0$

  • B

    $1$

  • C

    $\omega $

  • D

    ${\omega ^2}$

Similar Questions

समीकरण निकाय

$-k x+3 y-14 z=25$

$-15 x+4 y-k z=3$

$-4 x+y+3 z=4$

सभी $k$ के लिये किस समुच्चय में संगत होगा-

  • [JEE MAIN 2022]

$'K'$ के मानो की संख्या, जिनके लिए समीकरण निकाय

$(k+1) x+8 y=4 k$

$k x+(k+3) y=3 k-1$

के पास कोई हल नहीं है, है

  • [JEE MAIN 2013]

माना रैखिक समीकरण निकाय  $x+y+k z=2$ ; $2 x+3 y-z=1$ ; $3 x+4 y+2 z=k$ के अनंत हल है, तो निकाय  $( k +1) x +(2 k -1) y =7$ ; $(2 k +1) x +( k +5) y =10$ 

  • [JEE MAIN 2023]

यदि $A =\left[\begin{array}{ccc}1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1\end{array}\right],$ जहाँ $0 \leq \theta \leq 2 \pi$ हो तो:

सारणिकों का प्रयोग करके $(1,2)$ और $(3,6)$ को मिलाने वाली रेखा का समीकरण ज्ञात कीजिए।