3 and 4 .Determinants and Matrices
medium

જો $\omega $ એ એકનું કાલ્પનિક બીજ હોય , તો $\left| {\,\begin{array}{*{20}{c}}1&\omega &{ - {\omega ^2}/2}\\1&1&1\\1&{ - 1}&0\end{array}\,} \right| = $

A

$0$

B

$1$

C

$\omega $

D

${\omega ^2}$

Solution

(a) $\left| {\,\begin{array}{*{20}{c}}1&\omega &{ – {\omega ^2}/2}\\1&1&1\\1&{ – 1}&0\end{array}\,} \right|  = – \frac{1}{2}\left| {\,\begin{array}{*{20}{c}}1&\omega &{{\omega ^2}}\\1&1&{ – 2}\\1&{ – 1}&0\end{array}\,} \right|$

= $ – \frac{1}{2}\left| {\,\begin{array}{*{20}{c}}0&\omega &{{\omega ^2}}\\0&1&{ – 2}\\0&{ – 1}&0\end{array}\,} \right| = 0$,     (Apply ${C_1} \to {C_1} + {C_2} + {C_3})$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.