यदि  $a,b,c$ भिन्न हैं तथा $\left| {\,\begin{array}{*{20}{c}}a&{{a^2}}&{{a^3} - 1}\\b&{{b^2}}&{{b^3} - 1}\\c&{{c^2}}&{{c^3} - 1}\end{array}\,} \right| = 0$, तब

  • A

    $a + b + c = 0$

  • B

    $abc = 1$

  • C

    $a + b + c = 1$

  • D

    $ab + bc + ca = 0$

Similar Questions

सारणिकों के गुणधर्मों का प्रयोग करके सिद्ध कीजिए :

$\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|=(a+b)(b-c)(c-a)$

माना कि $\beta$ एक वास्तविक संख्या (real number) है। आव्यूह (matrix)

$A=\left(\begin{array}{ccc}\beta & 0 & 1 \\ 2 & 1 & -2 \\ 3 & 1 & -2\end{array}\right)$

पर विचार कीजिए। यदि $A^7-(\beta-1) A^6-\beta A^5$ एक अव्युतक्रमणीय आव्यूह (singular matrix) है, तब $9 \beta$ का मान. . . . . है।

  • [IIT 2022]

$\left| {\,\begin{array}{*{20}{c}}{441}&{442}&{443}\\{445}&{446}&{447}\\{449}&{450}&{451}\end{array}\,} \right|$ का मान है

सारणिकों के गुणधर्मो का प्रयोग करके निम्नलिखित प्रश्न को सिद्ध कीजिए :

$\left|\begin{array}{ccc}3 a & -a+b & -a+c \\ -b+a & 3 b & -b+c \\ -c+a & -c+b & 3 c\end{array}\right|=3(a+b+c)(a b+b c+c a)$

यदि $\left| {\,\begin{array}{*{20}{c}}{{{(b + c)}^2}}&{{a^2}}&{{a^2}}\\{{b^2}}&{{{(c + a)}^2}}&{{b^2}}\\{{c^2}}&{{c^2}}&{{{(a + b)}^2}}\end{array}\,} \right| = k\,abc{(a + b + c)^3}$, तो $k$ का मान है