सारणिकों के गुणधर्मों का प्रयोग करके सिद्ध कीजिए :
$\left|\begin{array}{lll}x & x^{2} & y z \\ y & y^{2} & z x \\ z & z^{2} & x y\end{array}\right|=(x-y)(y-z)(z-x)(x y+y z+z x)$
Let $\Delta=\left|\begin{array}{lll}x & x^{2} & y z \\ y & y^{2} & z x \\ z & z^{2} & x y\end{array}\right|$
Applying $R_{2} \rightarrow R_{2}-R_{1},$ and $R_{3} \rightarrow R_{3}-R_{1},$ we have:
$\Delta=\left|\begin{array}{ccc}x & x^{2} & y z \\ y-x & y^{2}-x^{2} & z x-y z \\ z-x & z^{2}-x^{2} & x y-y z\end{array}\right|$
$=\left|\begin{array}{ccc}x & x^{2} & y z \\ -(x-y) & -(x-y)(x+y) & z(x-y) \\ (z-x) & (z-x)(z+x) & -y(z-x)\end{array}\right|$
$=(x-y)(z-x)\left|\begin{array}{ccc}x & x^{2} & y z \\ -1 & -x-y & z \\ 1 & z-y & z-y\end{array}\right|$
Applying $R_{3} \rightarrow R_{3}+R_{2},$ we have:
$\Delta=(x-y)(z-x)\left|\begin{array}{ccc}x & x^{2} & y z \\ -1 & -x-y & z \\ 1 & z-y & z-y\end{array}\right|$
$=(x-y)(z-x)(z-y)\left|\begin{array}{ccc}x & x^{2} & y z \\ -1 & -x-y & z \\ 0 & 1 & 1\end{array}\right|$
Expanding along $R_{3},$ we have:
$\Delta=[(x-y)(z-x)(z-y)]\left[(-1)\left|\begin{array}{cc}x & y z \\ -1 & z\end{array}\right|+1\left|\begin{array}{cc}x & x^{2} \\ -1 & -x-y\end{array}\right|\right]$
$=(x-y)(z-x)(z-y)\left[(-x z-y z)+\left(-x^{2}-x y+x^{2}\right)\right]$
$=-(x-y)(z-x)(z-y)(x y+y z+z x)$
$=(x-y)(y-z)(z-x)(x y+y z+z x)$
Hence, the given result is proved.
$\left| {\,\begin{array}{*{20}{c}}{{b^2} + {c^2}}&{{a^2}}&{{a^2}}\\{{b^2}}&{{c^2} + {a^2}}&{{b^2}}\\{{c^2}}&{{c^2}}&{{a^2} + {b^2}}\end{array}\,} \right| = $
यदि $a, b$ और $ c$ तीन अशून्य वास्तविक संख्यायें हैं, तो $\Delta = \left| {\,\begin{array}{*{20}{c}}{{b^2}{c^2}}&{bc}&{b + c}\\{{c^2}{a^2}}&{ca}&{c + a}\\{{a^2}{b^2}}&{ab}&{a + b}\end{array}\,} \right| $ =
यदि $ab + bc + ca = 0$ और $\left| {\,\begin{array}{*{20}{c}}{a - x}&c&b\\c&{b - x}&a\\b&a&{c - x}\end{array}\,} \right| = 0$, तो $x$ का एक मान होगा
यदि $f(x) = \left| {\begin{array}{*{20}{c}}{x - 3}&{2{x^2} - 18}&{3{x^3} - 81}\\{x - 5}&{2{x^2} - 50}&{4{x^3} - 500}\\1&2&3\end{array}} \right|$ then $f(1).f(3) + f(3).f(5) + f(5).f(1)$=
$\left| {\,\begin{array}{*{20}{c}}{a - b - c}&{2a}&{2a}\\{2b}&{b - c - a}&{2b}\\{2c}&{2c}&{c - a - b}\end{array}\,} \right| = $