3 and 4 .Determinants and Matrices
medium

જો $a,b,c$ એ અસમાન હોય અને $\left| {\,\begin{array}{*{20}{c}}a&{{a^2}}&{{a^3} - 1}\\b&{{b^2}}&{{b^3} - 1}\\c&{{c^2}}&{{c^3} - 1}\end{array}\,} \right| = 0$ તો . . .

A

$a + b + c = 0$

B

$abc = 1$

C

$a + b + c = 1$

D

$ab + bc + ca = 0$

Solution

(b) $\left| {\,\begin{array}{*{20}{c}}a&{{a^2}}&{{a^3} – 1}\\b&{{b^2}}&{{b^3} – 1}\\c&{{c^2}}&{{c^3} – 1}\end{array}\,} \right| = 0$

==> $\left| {\,\begin{array}{*{20}{c}}a&{{a^2}}&{{a^3}}\\b&{{b^2}}&{{b^3}}\\c&{{c^2}}&{{c^3}}\end{array}\,} \right| – \left| {\,\begin{array}{*{20}{c}}a&{{a^2}}&1\\b&{{b^2}}&1\\c&{{c^2}}&1\end{array}\,} \right| = 0$

==> $abc\,\left| {\,\begin{array}{*{20}{c}}1&a&{{a^2}}\\1&b&{{b^2}}\\1&c&{{c^2}}\end{array}\,} \right| – \left| {\,\begin{array}{*{20}{c}}1&a&{{a^2}}\\1&b&{{b^2}}\\1&c&{{c^2}}\end{array}\,} \right| = 0$

==> $(abc – 1)\,\left| {\,\begin{array}{*{20}{c}}1&a&{{a^2}}\\1&b&{{b^2}}\\1&c&{{c^2}}\end{array}\,} \right| = 0$

Since $a,b,c$ are different, so $\left| {\,\begin{array}{*{20}{c}}1&a&{{a^2}}\\1&b&{{b^2}}\\1&c&{{c^2}}\end{array}\,} \right| \ne 0$

Hence $abc – 1 = 0$ i.e., $abc = 1$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.