यदि $\left| {\,\begin{array}{*{20}{c}}{{{(b + c)}^2}}&{{a^2}}&{{a^2}}\\{{b^2}}&{{{(c + a)}^2}}&{{b^2}}\\{{c^2}}&{{c^2}}&{{{(a + b)}^2}}\end{array}\,} \right| = k\,abc{(a + b + c)^3}$, तो $k$ का मान है
$-1$
$1$
$2$
$-2$
बिना प्रसरण किए और सारणिकों के गुणधर्मो का प्रयोग करके सिद्ध कीजिए।
$\left|\begin{array}{lll}x & a & x+a \\ y & b & y+b \\ z & c & z+c\end{array}\right|=0$
$\left| {\,\begin{array}{*{20}{c}}{b + c}& a& a\\b& {c + a}& b\\c& c& {a + b}\end{array}\,} \right| = $
$\left| {\begin{array}{*{20}{c}}{1 + {{\sin }^2}\theta }&{{{\sin }^2}\theta }&{{{\sin }^2}\theta }\\{{{\cos }^2}\theta }&{1 + {{\cos }^2}\theta }&{{{\cos }^2}\theta }\\{4\sin 4\theta }&{4\sin 4\theta }&{1 + 4\sin 4\theta }\end{array}} \right| = 0$ तो $\sin \,4\theta $ का मान है
$\left| {\,\begin{array}{*{20}{c}}{1 + x}&1&1\\1&{1 + y}&1\\1&1&{1 + z}\end{array}\,} \right| = $
सारणिकों के गुणधर्मों का प्रयोग करके सिद्ध कीजिए :
$\left|\begin{array}{ccc}y+k & y & y \\ y & y+k & y \\ y & y & y+k\end{array}\right|=k^{2}(3 x+k)$