समीकरण
$\left|\begin{array}{ccc}1+\sin ^{2} x & \sin ^{2} x & \sin ^{2} x \\ \cos ^{2} x & 1+\cos ^{2} x & \cos ^{2} x \\ 4 \sin 2 x & 4 \sin 2 x & 1+4 \sin 2 x\end{array}\right|=0,(0 < x < \pi)$ के हल है
$\frac{\pi}{12}, \frac{\pi}{6}$
$\frac{\pi}{6}, \frac{5 \pi}{6}$
$\frac{5 \pi}{12}, \frac{7 \pi}{12}$
$\frac{7 \pi}{12}, \frac{11 \pi}{12}$
दर्शाइए कि $\left|\begin{array}{ccc}a & b & c \\ a+2 x & b+2 y & c+2 z \\ x & y & z\end{array}\right|=0$
यदि ${U_n} = \left| {\,\begin{array}{*{20}{c}}n&1&5\\{{n^2}}&{2N + 1}&{2N + 1}\\{{n^3}}&{3{N^2}}&{3N}\end{array}\,} \right|$ , तब $\sum\limits_{n = 1}^N {{U_n}} $ का मान है
यदि $a,b,c$ धनात्मक पूर्णांक हैं, तो सारणिक $\Delta = \left| {\,\begin{array}{*{20}{c}}{{a^2} + x}&{ab}&{ac}\\{ab}&{{b^2} + x}&{bc}\\{ac}&{bc}&{{c^2} + x}\end{array}\,} \right|$ विभाज्य है
यदि $\omega $ इकाई का सम्मिश्र घनमूल हो, तो $\left| {\,\begin{array}{*{20}{c}}2&{2\omega }&{ - {\omega ^2}}\\1&1&1\\1&{ - 1}&0\end{array}\,} \right| = $
$\left| {\,\begin{array}{*{20}{c}}{{b^2} - ab}&{b - c}&{bc - ac}\\{ab - {a^2}}&{a - b}&{{b^2} - ab}\\{bc - ac}&{c - a}&{ab - {a^2}}\end{array}\,} \right| = $