यदि ${D_r} = \left| {\begin{array}{*{20}{c}}{{2^{r - 1}}}&{{{2.3}^{r - 1}}}&{{{4.5}^{r - 1}}}\\x&y&z\\{{2^n} - 1}&{{3^n} - 1}&{{5^n} - 1}\end{array}} \right|$, तो $\sum\limits_{r = 1}^n {{D_r}} $ का मान है

  • A

    $1$

  • B

    $-1$

  • C

    $0$

  • D

    इनमें से कोई नहीं

Similar Questions

आव्यूह $\left[\begin{array}{cc}-1 & 2 \\ 1 & -1\end{array}\right]$ पर केवल एक प्रारंभिक पंक्ति संक्रिया से निम्न में से कौनसा आव्यूह प्राप्त नहीं किया जा सकता है ?

  • [JEE MAIN 2022]

यदि $a, b$ और $c$ वास्तविक संख्याएँ हो और सारणिक

$\Delta=\left|\begin{array}{lll}b+c & c+a & a+b \\ c+a & a+b & b+c \\ a+b & b+c & c+a\end{array}\right|=0$

हो तो दर्शाइए कि या तो $a+b+c=0$ या $a=b=c$ है।

सारणिकों के गुणधर्मों का प्रयोग करके सिद्ध कीजिए :

$\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|=(a+b)(b-c)(c-a)$

$\left| {\,\begin{array}{*{20}{c}}1&1&1\\{bc}&{ca}&{ab}\\{b + c}&{c + a}&{a + b}\end{array}\,} \right|$

बिना प्रसरण किए और सारणिकों के गुणधर्मो का प्रयोग करके सिद्ध कीजिए।

$\left|\begin{array}{lll}a-b & b-c & c-a \\ b-c & c-a & a-b \\ c-a & a-b & b-c\end{array}\right|=0$