यदि ${D_r} = \left| {\begin{array}{*{20}{c}}{{2^{r - 1}}}&{{{2.3}^{r - 1}}}&{{{4.5}^{r - 1}}}\\x&y&z\\{{2^n} - 1}&{{3^n} - 1}&{{5^n} - 1}\end{array}} \right|$, तो $\sum\limits_{r = 1}^n {{D_r}} $ का मान है
$1$
$-1$
$0$
इनमें से कोई नहीं
आव्यूह $\left[\begin{array}{cc}-1 & 2 \\ 1 & -1\end{array}\right]$ पर केवल एक प्रारंभिक पंक्ति संक्रिया से निम्न में से कौनसा आव्यूह प्राप्त नहीं किया जा सकता है ?
यदि $a, b$ और $c$ वास्तविक संख्याएँ हो और सारणिक
$\Delta=\left|\begin{array}{lll}b+c & c+a & a+b \\ c+a & a+b & b+c \\ a+b & b+c & c+a\end{array}\right|=0$
हो तो दर्शाइए कि या तो $a+b+c=0$ या $a=b=c$ है।
सारणिकों के गुणधर्मों का प्रयोग करके सिद्ध कीजिए :
$\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|=(a+b)(b-c)(c-a)$
$\left| {\,\begin{array}{*{20}{c}}1&1&1\\{bc}&{ca}&{ab}\\{b + c}&{c + a}&{a + b}\end{array}\,} \right|$
बिना प्रसरण किए और सारणिकों के गुणधर्मो का प्रयोग करके सिद्ध कीजिए।
$\left|\begin{array}{lll}a-b & b-c & c-a \\ b-c & c-a & a-b \\ c-a & a-b & b-c\end{array}\right|=0$