If $\omega $ is an imaginary root of unity, then the value of $\left| {\,\begin{array}{*{20}{c}}a&{b{\omega ^2}}&{a\omega }\\{b\omega }&c&{b{\omega ^2}}\\{c{\omega ^2}}&{a\omega }&c\end{array}\,} \right|$ is

  • A

    ${a^3} + {b^3} + {c^3} - 3abc$

  • B

    ${a^2}b - {b^2}c$

  • C

    $0$

  • D

    ${a^2} + {b^2} + {c^2}$

Similar Questions

The value of $\left| {\begin{array}{*{20}{c}}
1&x&y\\
2&{\sin x + 2x}&{\sin y + 2y}\\
3&{\cos x + 3x}&{\cos y + 3y}
\end{array}} \right|$ is

If $1,\omega ,{\omega ^2}$ are the cube roots of unity, then $\Delta = \left| {\,\begin{array}{*{20}{c}}1&{{\omega ^n}}&{{\omega ^{2n}}}\\{{\omega ^n}}&{{\omega ^{2n}}}&1\\{{\omega ^{2n}}}&1&{{\omega ^n}}\end{array}\,} \right|$ is equal to

  • [AIEEE 2003]

Let the system of linear equations $4 x+\lambda y+2 z=0$ ;  $2 x-y+z=0$ ;  $\mu x +2 y +3 z =0, \lambda, \mu \in R$ has a non-trivial solution. Then which of the following is true?

  • [JEE MAIN 2021]

The number of solutions of the equations $x + 4y - z = 0,$ $3x - 4y - z = 0,\,x - 3y + z = 0$ is

$x + ky - z = 0,3x - ky - z = 0$ and $x - 3y + z = 0$ has non-zero solution for $k =$

  • [IIT 1988]