3 and 4 .Determinants and Matrices
hard

The number of real values $\lambda$, such that the system of linear equations $2 x-3 y+5 z=9$  ;  $x+3 y-z=-18$    ; $3 x-y+\left(\lambda^{2}-1 \lambda \mid\right) z=16$ has no solution, is :-

A

$0$

B

$1$

C

$2$

D

$4$

(JEE MAIN-2022)

Solution

$\Delta=\left|\begin{array}{ccc}2 & -3 & 5 \\ 1 & 3 & -1 \\ 3 & -1 & \lambda^{2}-|\lambda|\end{array}\right|=2\left(3 \lambda^{2}-3|\lambda|-1\right)$

$+3\left(\lambda^{2}-|\lambda|+3\right)$

$+5(-1-9)$

$=9 \lambda^{2}-9|\lambda|-43$

$=9|\lambda|^{2}-9|\lambda|-43$

$\Delta=0$ for 2 values of $|\lambda|$ out of which one is $-ve$ and other is $+ve$

So,$2$ values of $\lambda$ satisfy the system of equations to obtain no solution

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.