The number of real values $\lambda$, such that the system of linear equations $2 x-3 y+5 z=9$  ;  $x+3 y-z=-18$    ; $3 x-y+\left(\lambda^{2}-1 \lambda \mid\right) z=16$ has no solution, is :-

  • [JEE MAIN 2022]
  • A

    $0$

  • B

    $1$

  • C

    $2$

  • D

    $4$

Similar Questions

The system of linear equations  $3 x-2 y-k z=10$; $2 x-4 y-2 z=6$ ; $x+2 y-z=5\, m$ is inconsistent if

  • [JEE MAIN 2021]

The roots of the determinant equation (in $x$) $\left| {\,\begin{array}{*{20}{c}}a&a&x\\m&m&m\\b&x&b\end{array}\,} \right| = 0$

Find the equation of the line joining $\mathrm{A}(1,3)$ and $\mathrm{B}(0,0)$ using determinants and find $\mathrm{k}$ if $\mathrm{D}(\mathrm{k}, 0)$ is a point such that area of triangle $\mathrm{ABD}$ is $3 \,\mathrm{sq}$ $\mathrm{units}$.

If $a \ne p,b \ne q,c \ne r$ and $\left| {\,\begin{array}{*{20}{c}}p&b&c\\{p + a}&{q + b}&{2c}\\a&b&r\end{array}\,} \right|$ =$ 0$, then $\frac{p}{{p - a}} + \frac{q}{{q - b}} + \frac{r}{{r - c}} = $

The system of linear equations $x + y + z = 2$, $2x + y - z = 3,$ $3x + 2y + kz = 4$has a unique solution if