3 and 4 .Determinants and Matrices
medium

$l,m,n$ are the ${p^{th}},{q^{th}}$and ${r^{th}}$term of a G.P., all positive, then $\left| {\,\begin{array}{*{20}{c}}{\log l}&{p\,\,\,\,\,\begin{array}{*{20}{c}}1\end{array}}\\{\log m}&{q\,\,\,\,\,\begin{array}{*{20}{c}}1\end{array}}\\{\log n}&{r\,\,\,\,\,\begin{array}{*{20}{c}}1\end{array}}\end{array}\,} \right|$ equals

A

$-1$

B

$2$

C

$1$

D

$0$

(AIEEE-2002)

Solution

(d) Let $A$  be the first term and $ R$  be the common ratio of the $ G.P$ then,

$l = A{R^{p – 1}} \Rightarrow \log l = \log A + (p – 1)\log R$…..$(i)$

$m = A{R^{q – 1}} \Rightarrow \log m = \log A + (q – 1)\log R$…..$(ii)$

$n = A{R^{r – 1}} \Rightarrow \log n = \log A + (r – 1)\log R$…..$(iii)$

Multiplying $(i), (ii)$ and $(iii)$ by

$(q – r),\,(r – p)\,$ and $(p – q)$respectively and adding we get, $\log l\,(q – r) + \log m(r – p) + \log n(p – q) = 0$

$\therefore \,\Delta = 0$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.