જો ${a^2} + {b^2} + {c^2} = - 2$ અને $f(x) = \left| {\begin{array}{*{20}{c}}{1 + {a^2}x}&{(1 + {b^2})x}&{(1 + {c^2})x}\\{(1 + {a^2})x}&{1 + {b^2}x}&{(1 + {c^2})x}\\{(1 + {a^2})x}&{(1 + {b^2})x}&{1 + {c^2}x}\end{array}} \right|$ તો $f(x)$ એ . . . . બહુપદી ઘાતાંક છે .
$3$
$2$
$1$
$0$
ધારો કે $a-2 b+c=1$ છે . જો $f(x)=\left|\begin{array}{lll}{x+a} & {x+2} & {x+1} \\ {x+b} & {x+3} & {x+2} \\ {x+c} & {x+4} & {x+3}\end{array}\right|,$ હોય તો . . .
$\Delta=\left|\begin{array}{lll}1 & a & b c \\ 1 & b & c a \\ 1 & c & a b\end{array}\right|$ નું મૂલ્ય શોધો.
જો વિધેય $f :\left[\frac{\pi}{4}, \frac{\pi}{2}\right] \rightarrow R ,$ :
$f (\theta)=\left|\begin{array}{ccc}-\sin ^{2} \theta & -1-\sin ^{2} \theta & 1 \\ -\cos ^{2} \theta & -1-\cos ^{2} \theta & 1 \\ 12 & 10 & -2\end{array}\right|$ ની ન્યૂનતમ અને મહત્તમ કિમતો અનુક્રમે $m$ અને $M$ હોય તો $( m , M )$ ની કિમત શોધો
$\left| {\,\begin{array}{*{20}{c}}{31}&{37}&{92}\\{31}&{58}&{71}\\{31}&{105}&{24}\end{array}\,} \right|$ = . . ..
જો $A$, $B$ અને $C$ ત્રિકોણના ખૂણા હોય તો નિશ્ચાયક
$\left| {\begin{array}{*{20}{c}}
{ - 1 + \cos B}&{\cos C + \cos B}&{\cos B} \\
{\cos C + \cos A}&{ - 1 + \cos A}&{\cos A} \\
{ - 1 + \cos B}&{ - 1 + \cos A}&{ - 1}
\end{array}} \right|$ ની કિમંત મેળવો.