यदि ${a^2} + {b^2} + {c^2} = - 2$ तथा $f(x) = \left| {\begin{array}{*{20}{c}}{1 + {a^2}x}&{(1 + {b^2})x}&{(1 + {c^2})x}\\{(1 + {a^2})x}&{1 + {b^2}x}&{(1 + {c^2})x}\\{(1 + {a^2})x}&{(1 + {b^2})x}&{1 + {c^2}x}\end{array}} \right|$ तो बहुपद $f(x)$ की घात होगी
$3$
$2$
$1$
$0$
यदि ${a_1},{a_2},{a_3},........,{a_n},......$ गुणोत्तर श्रेणी में हों और ${a_i} > 0$, ($i$ के प्रत्येक मान के लिये) तब सारणिक $\Delta = \left| {\,\begin{array}{*{20}{c}}{\log {a_n}}&{\log {a_{n + 2}}}&{\log {a_{n + 4}}}\\{\log {a_{n + 6}}}&{\log {a_{n + 8}}}&{\log {a_{n + 10}}}\\{\log {a_{n + 12}}}&{\log {a_{n + 14}}}&{\log {a_{n + 16}}}\end{array}} \right|$ का मान होगा
यदि समीकरण निकाय $ax + y + z = 0$, $x + by + z = 0$ और $x + y + cz = 0$, जहाँ $a,b,c \ne 1$ का एक अशून्य हल है, तो $\frac{1}{{1 - a}} + \frac{1}{{1 - b}} + \frac{1}{{1 - c}}$ का मान है
सारणिकों के गुणधर्मों का प्रयोग करके सिद्ध कीजिए :
$\left|\begin{array}{ccc}x+y+2 z & x & y \\ z & y+z+2 x & y \\ z & x & z+x+2 y\end{array}\right|=2(x+y+z)^{3}$
$\left| {\,\begin{array}{*{20}{c}}a&{a + b}&{a + 2b}\\{a + 2b}&a&{a + b}\\{a + b}&{a + 2b}&a\end{array}\,} \right|$ =
सारणिक $\left| {\,\begin{array}{*{20}{c}}a&b&{a\alpha + b}\\b&c&{b\alpha + c}\\{a\alpha + b}&{b\alpha + c}&0\end{array}\,} \right| = 0$, if $a,b,c$