3 and 4 .Determinants and Matrices
hard

यदि ${a^2} + {b^2} + {c^2} = - 2$ तथा $f(x) = \left| {\begin{array}{*{20}{c}}{1 + {a^2}x}&{(1 + {b^2})x}&{(1 + {c^2})x}\\{(1 + {a^2})x}&{1 + {b^2}x}&{(1 + {c^2})x}\\{(1 + {a^2})x}&{(1 + {b^2})x}&{1 + {c^2}x}\end{array}} \right|$ तो बहुपद $f(x)$ की घात होगी

A

$3$

B

$2$

C

$1$

D

$0$

(AIEEE-2005)

Solution

संक्रिया ${C_1} \to {C_1} + {C_2} + {C_3}$ के प्रयोग से,

$f(x) = \left| {\,\begin{array}{*{20}{c}}1&{(1 + {b^2})x}&{(1 + {c^2})x}\\1&{1 + {b^2}x}&{(1 + {c^2})x}\\1&{(1 + {b^2})x}&{1 + {c^2}x}\end{array}\,} \right|$, $(\because {a^2} + {b^2} + {c^2} + 2 = 0)$

संक्रिया ${R_2} \to {R_2} – {R_1}$,${R_3} \to {R_3} – {R_1}$ के प्रयोग से,$f(x) = \left| {\,\begin{array}{*{20}{c}}1&{(1 + {b^2})x}&{(1 + {c^2})x}\\0&{1 – x}&0\\0&0&{1 – x}\end{array}\,} \right| = {(1 – x)^2}.$

अत: $f(x)$ की घात $= 2.$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.