यदि $a + b + c = 0$, तो समीकरण $\left| {\,\begin{array}{*{20}{c}}{a - x}&c&b\\c&{b - x}&a\\b&a&{c - x}\end{array}\,} \right| = 0$ के मूल हैं

  • A

    $0$

  • B

    $ \pm \frac{3}{2}({a^2} + {b^2} + {c^2})$

  • C

    $0,\, \pm \sqrt {\frac{3}{2}({a^2} + {b^2} + {c^2})} $

  • D

    $0,\,\, \pm \sqrt {{a^2} + {b^2} + {c^2}} $

Similar Questions

माना कि $P=\left[a_1\right]$ एक $3 \times 3$ आव्यूह (matrix) है और $Q=\left[b_1\right]$, जहाँ $b_{\|}=2^{[H]} a_{\|}$जब $1 \leq i, j \leq 3$ है। यदि $P$ के सारणिक (determinant) का मान $2$ है तो आव्यूह $Q$ के सारणिक का मान निम्न है

  • [IIT 2012]

$\left| {\,\begin{array}{*{20}{c}}1&1&1\\{\cos (nx)}&{\cos (n + 1)x}&{\cos (n + 2)x}\\{\sin (nx)}&{\sin (n + 1)x}&{\sin (n + 2)x}\end{array}\,} \right|$ निर्भर नहीं करता है

सारणिक का प्रसरण किए बिना सिद्ध कीजिए कि $\left|\begin{array}{lll}a & a^{2} & b c \\ b & b^{2} & c a \\ c & c^{2} & a b\end{array}\right|=\left|\begin{array}{ccc}1 & a^{2} & a^{3} \\ 1 & b^{2} & b^{3} \\ 1 & c^{2} & c^{3}\end{array}\right|$

सिद्ध कीजिए कि $\Delta=\left|\begin{array}{ccc}a & a+b & a+b+c \\ 2 a & 3 a+2 b & 4 a+3 b+2 c \\ 3 a & 6 a+3 b & 10 a+6 b+3 c\end{array}\right|=a^{3}$

सारणिक $\left| {\,\begin{array}{*{20}{c}}4&{ - 6}&1\\{ - 1}&{ - 1}&1\\{ - 4}&{11}&{ - 1\,}\end{array}} \right|$ का मान है