If $f(x) = \left| {\begin{array}{*{20}{c}}{x - 3}&{2{x^2} - 18}&{3{x^3} - 81}\\{x - 5}&{2{x^2} - 50}&{4{x^3} - 500}\\1&2&3\end{array}} \right|$ then $f(1).f(3) + f(3).f(5) + f(5).f(1)$=

  • A

    $f(1)$

  • B

    $f (3)$

  • C

    $f(1) + f(3)$

  • D

    $f(1) + f(5)$

Similar Questions

If ${a_1},{a_2},{a_3},........,{a_n},......$ are in G.P. and ${a_i} > 0$  for each $i$, then the value of the determinant $\Delta = \left| {\,\begin{array}{*{20}{c}}{\log {a_n}}&{\log {a_{n + 2}}}&{\log {a_{n + 4}}}\\{\log {a_{n + 6}}}&{\log {a_{n + 8}}}&{\log {a_{n + 10}}}\\{\log {a_{n + 12}}}&{\log {a_{n + 14}}}&{\log {a_{n + 16}}}\end{array}} \right|$ is equal to

Let $\beta$ be a real number. Consider the matrix

$A=\left(\begin{array}{ccc}\beta & 0 & 1 \\ 2 & 1 & -2 \\ 3 & 1 & -2\end{array}\right)$

If $A^7-(\beta-1) A^6-\beta A^5$ is a singular matrix, then the value of $9 \beta$ is

  • [IIT 2022]

By using properties of determinants, show that:

$\left|\begin{array}{ccc}a^{2}+1 & a b & a c \\ a b & b^{2}+1 & b c \\ c a & c b & c^{2}+1\end{array}\right|=1+a^{2}+b^{2}+c^{2}$

Prove that $\left|\begin{array}{ccc}a^{2} & b c & a c+c^{2} \\ a^{2}+a b & b^{2} & a c \\ a b & b^{2}+b c & c^{2}\end{array}\right|=4 a^{2} b^{2} c^{2}$

Let $P$ be a matrix of order $3 \times 3$ such that all the entries in $P$ are from the set $\{-1,0,1\}$. Then, the maximum possible value of the determinant of $P$ is. . . . . . .

  • [IIT 2018]