$\left| {\,\begin{array}{*{20}{c}}1&a&{{a^2}}\\1&b&{{b^2}}\\1&c&{{c^2}}\end{array}\,} \right| = $
${a^2} + {b^2} + {c^2}$
$(a + b)\,(b + c)\,(c + a)$
$(a - b)(b - c)(c - a)$
None of these
If $a,b,c$ are in $A.P$., then the value of $\left| {\,\begin{array}{*{20}{c}}{x + 2}&{x + 3}&{x + a}\\{x + 4}&{x + 5}&{x + b}\\{x + 6}&{x + 7}&{x + c}\end{array}\,} \right|$ is
The value of the determinant $\left| {\,\begin{array}{*{20}{c}}{31}&{37}&{92}\\{31}&{58}&{71}\\{31}&{105}&{24}\end{array}\,} \right|$ is
The determinant $\left| {\begin{array}{*{20}{c}}{1\, + \,a\, + \,x}&{a\, + \,y}&{a\, + \,z}\\{b\, + \,x}&{1\, + \,b\, + \,y}&{b\, + \,z}\\{c\, + \,x}&{c\, + \,y}&{1\, + \,c\, + \,z}\end{array}} \right|$ $=$
The value of $\left| {\,\begin{array}{*{20}{c}}{{5^2}}&{{5^3}}&{{5^4}}\\{{5^3}}&{{5^4}}&{{5^5}}\\{{5^4}}&{{5^5}}&{{5^7}}\end{array}\,} \right|$ is
If the system of linear equation $x + 2ay + az = 0,$ $x + 3by + bz = 0,$ $x + 4cy + cz = 0$ has a non zero solution, then $a,b,c$