3 and 4 .Determinants and Matrices
medium

$\left| {\,\begin{array}{*{20}{c}}1&a&{{a^2}}\\1&b&{{b^2}}\\1&c&{{c^2}}\end{array}\,} \right| = $

A

${a^2} + {b^2} + {c^2}$

B

$(a + b)\,(b + c)\,(c + a)$

C

$(a - b)(b - c)(c - a)$

D

None of these

Solution

(c) $\left| {\,\begin{array}{*{20}{c}}1&a&{{a^2}}\\1&b&{{b^2}}\\1&c&{{c^2}}\end{array}\,} \right|\, = \left| {\,\begin{array}{*{20}{c}}0&{a – b}&{{a^2} – {b^2}}\\0&{b – c}&{{b^2} – {c^2}}\\1&c&{{c^2}}\end{array}\,} \right|,$     by $\begin{array}{l}{R_1} \to {R_1} – {R_2}\\{R_2} \to {R_2} – {R_3}\end{array}$

= $(a – b)\,(b – c)\,\left| {\,\begin{array}{*{20}{c}}0&1&{a + b}\\0&1&{b + c}\\1&c&{{c^2}}\end{array}\,} \right|$

= $(a – b)\,\,(b – c)\,\left| {\,\begin{array}{*{20}{c}}0&0&{a – c}\\0&1&{b + c}\\1&c&{{c^2}}\end{array}\,} \right|$,       by ${R_1} \to {R_1} – {R_2}$

= $(a – b)\,(b – c)\,(a – c)\,\left| {\,\begin{array}{*{20}{c}}0&0&1\\0&1&{b + c}\\1&c&{{c^2}}\end{array}\,} \right|$

= $(a – b)\,(b – c)\,(a – c)\,.\,( – 1) = (a – b)\,(b – c)\,(c – a)$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.