Using the property of determinants and without expanding, prove that:
$\left|\begin{array}{lll}2 & 7 & 65 \\ 3 & 8 & 75 \\ 5 & 9 & 86\end{array}\right|=0$
$\left|\begin{array}{lll}2 & 7 & 65 \\ 3 & 8 & 75 \\ 5 & 9 & 86\end{array}\right|=\left|\begin{array}{lll}2 & 7 & 63+2 \\ 3 & 8 & 72+3 \\ 5 & 9 & 81+5\end{array}\right|$
$=\left|\begin{array}{lll}2 & 7 & 63 \\ 3 & 8 & 72 \\ 5 & 9 & 81\end{array}\right|+\left|\begin{array}{lll}2 & 7 & 2 \\ 3 & 8 & 3 \\ 5 & 9 & 5\end{array}\right|$
$=\left|\begin{array}{lll}2 & 7 & 9(7) \\ 3 & 8 & 9(8) \\ 5 & 9 & 9(9)\end{array}\right|+0$ [ Two Coloumms are identical]
$=9\left|\begin{array}{lll}2 & 7 & 7 \\ 3 & 8 & 8 \\ 5 & 9 & 9\end{array}\right|$
$=0$ [ Two Coloumns are identical]
The determinant $\left| {\,\begin{array}{*{20}{c}}a&b&{a\alpha + b}\\b&c&{b\alpha + c}\\{a\alpha + b}&{b\alpha + c}&0\end{array}\,} \right| = 0$, if $a,b,c$ are in
If $\left| {\,\begin{array}{*{20}{c}}{x + 1}&{x + 2}&{x + 3}\\{x + 2}&{x + 3}&{x + 4}\\{x + a}&{x + b}&{x + c}\end{array}\,} \right| = 0$, then $a,b,c$ are in
Prove that
$\Delta=\left|\begin{array}{ccc}
a+b x & c+d x & p+q x \\
a x+b & c x+d & p x+q \\
u & v & w
\end{array}\right|=\left(1-x^{2}\right)\left|\begin{array}{lll}
a & c & p \\
b & d & q \\
u & v & m
\end{array}\right|$
By using properties of determinants, show that:
$\left|\begin{array}{ccc}x+4 & 2 x & 2 x \\ 2 x & x+4 & 2 x \\ 2 x & 2 x & x+4\end{array}\right|=(5 x+4)(4-x)^{2}$