જો $2x + 3y - 5z = 7, \,x + y + z = 6$, $3x - 4y + 2z = 1,$ તો $ x =$
$\left| {\,\begin{array}{*{20}{c}}2&{ - 5}&7\\1&1&6\\3&2&1\end{array}\,} \right| \div \left| {\,\begin{array}{*{20}{c}}7&3&{ - 5}\\6&1&1\\1&{ - 4}&2\end{array}\,} \right|$
$\left| {\,\begin{array}{*{20}{c}}{ - 7}&3&{ - 5}\\{ - 6}&1&1\\{ - 1}&{ - 4}&2\end{array}\,} \right| \div \left| {\,\begin{array}{*{20}{c}}2&3&{ - 5}\\1&1&1\\3&{ - 4}&2\end{array}\,} \right|$
$\left| {\,\begin{array}{*{20}{c}}7&3&{ - 5}\\6&1&1\\1&{ - 4}&2\end{array}\,} \right| \div \left| {\,\begin{array}{*{20}{c}}2&3&{ - 5}\\1&1&1\\3&{ - 4}&2\end{array}\,} \right|$
એકપણ નહી.
સમીકરણની સંહતિ $x + 4y - z = 0,$ $3x - 4y - z = 0,\,x - 3y + z = 0$ ના ઉકેલની સંખ્યા મેળવો.
સાબિત કરો કે બિંદુઓ $A(a, b+c), B(b, c+a), C(c, a+b)$ સમરેખ છે.
ધારો કે $\omega $ એક એવી સંકર સંખ્યા છે કે જેથી $2\omega + 1 = z$ જયાં $z = \sqrt { - 3} $ . જો $\left| {\begin{array}{*{20}{c}}1&1&1\\1&{ - {\omega ^2} - 1}&{{\omega ^2}}\\1&{{\omega ^2}}&{{\omega ^7}}\end{array}} \right| = 3k$ હોય,તો $k$ મેળવો. .
સમીકરણની સંહતિ ${x_1} + 2{x_2} + 3{x_3} = a2{x_1} + 3{x_2} + {x_3} = $ $b3{x_1} + {x_2} + 2{x_3} = c$ ને . . . ઉકેલ છે.
સમીકરણ સહતિ $x+y+z=\alpha$ ; $\alpha x+2 \alpha y+3 z=-1$ ; $x+3 \alpha y+5 z=4$ સુસંગત થાય તેવી $\alpha$ ની કિંમતોની સંખ્યા ............ છે.