3 and 4 .Determinants and Matrices
easy

यदि $M = \left[ {\begin{array}{*{20}{c}}1&2\\2&3\end{array}} \right]$ और ${M^2} - \lambda M - {I_2} = 0$, तब $\lambda  = $

A

$-2$

B

$2$

C

$-4$

D

$4$

Solution

(d) ${M^2} – \lambda M – {I_2} = 0$

$ \Rightarrow \,\,\left[ {\begin{array}{*{20}{c}}1&2\\2&3\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1&2\\2&3\end{array}} \right] – \left[ {\begin{array}{*{20}{c}}\lambda &{2\lambda }\\{2\lambda }&{3\lambda }\end{array}} \right] – \left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right] = O$

$ \Rightarrow \,\,\left[ {\begin{array}{*{20}{c}}5&8\\8&{13}\end{array}} \right] – \left[ {\begin{array}{*{20}{c}}\lambda &{2\lambda }\\{2\lambda }&{3\lambda }\end{array}} \right] – \left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right] = O$

$ \Rightarrow \,\,\left[ {\begin{array}{*{20}{c}}{5 – \lambda }&{8 – 2\lambda }\\{8 – 2\lambda }&{13 – 3\lambda }\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]$

 $5 – \lambda  = 1,\,\,8 – 2\lambda  = 0,\,\,13 – 3\lambda  = 1$

 $\lambda  = 4$, जो तीनों समीकरणों को सन्तुष्ट करता है।  

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.