3 and 4 .Determinants and Matrices
easy

If $A = \left[ {\begin{array}{*{20}{c}}2&2\\a&b\end{array}} \right]$ and ${A^2} = O$, then $(a,b) = $

A

$( - 2,\, - 2)$

B

$(2,\, - 2)$

C

$( - 2,\,2)$

D

$(2,\,2)$

Solution

(a) ${A^2} = \left[ {\begin{array}{*{20}{c}}2&2\\a&b\end{array}} \right]\,\left[ {\begin{array}{*{20}{c}}2&2\\a&b\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{4 + 2a}&{4 + 2b}\\{2a + ab}&{2a + {b^2}}\end{array}} \right] = 0 = \left[ {\begin{array}{*{20}{c}}0&0\\0&0\end{array}} \right]$

 $ \Rightarrow \,\,4 + 2a = 0,4 + 2b = 0,$$2a + ab = 0,$

 $2a + {b^2} = 0$ must be consistent.

 $ \Rightarrow $ $a = – 2$, $b = – 2$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.