- Home
- Standard 12
- Mathematics
If $A = \left[ {\begin{array}{*{20}{c}}2&2\\a&b\end{array}} \right]$ and ${A^2} = O$, then $(a,b) = $
$( - 2,\, - 2)$
$(2,\, - 2)$
$( - 2,\,2)$
$(2,\,2)$
Solution
(a) ${A^2} = \left[ {\begin{array}{*{20}{c}}2&2\\a&b\end{array}} \right]\,\left[ {\begin{array}{*{20}{c}}2&2\\a&b\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{4 + 2a}&{4 + 2b}\\{2a + ab}&{2a + {b^2}}\end{array}} \right] = 0 = \left[ {\begin{array}{*{20}{c}}0&0\\0&0\end{array}} \right]$
$ \Rightarrow \,\,4 + 2a = 0,4 + 2b = 0,$$2a + ab = 0,$
$2a + {b^2} = 0$ must be consistent.
$ \Rightarrow $ $a = – 2$, $b = – 2$.
Similar Questions
Consider the following information regarding the number of men and women workers in three factories $I,\,II$ and $III$
Men workers |
Women workers |
|
$I$ | $30$ | $25$ |
$II$ | $25$ | $31$ |
$III$ | $27$ | $26$ |
Represent the above information in the form of a $3 \times 2$ matrix. What does the entry in the third row and second column represent?