3 and 4 .Determinants and Matrices
easy

If $A = \left[ {\begin{array}{*{20}{c}}1&2\\{ - 3}&0\end{array}} \right]$ and $B = \left[ {\begin{array}{*{20}{c}}{ - 1}&0\\2&3\end{array}} \right]$, then

A

${A^2} = A$

B

${B^2} = B$

C

$AB \ne BA$

D

$AB = BA$

Solution

(c) Since ${A^2} = \left[ {\begin{array}{*{20}{c}}1&2\\{ – 3}&0\end{array}} \right]\,\left[ {\begin{array}{*{20}{c}}1&2\\{ – 3}&0\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{ – 4}&2\\{ – 3}&{ – 6}\end{array}} \right] \ne A$

${B^2} = \left[ {\begin{array}{*{20}{c}}{ – 1}&0\\2&3\end{array}} \right]\,\left[ {\begin{array}{*{20}{c}}{ – 1}&0\\2&3\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}1&0\\4&9\end{array}} \right] \ne B$

Now $AB = \left[ {\begin{array}{*{20}{c}}1&2\\{ – 3}&0\end{array}} \right]\,\left[ {\begin{array}{*{20}{c}}{ – 1}&0\\2&3\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}3&6\\3&0\end{array}} \right]$

and $BA = \left[ {\begin{array}{*{20}{c}}{ – 1}&0\\2&3\end{array}} \right]\,\left[ {\begin{array}{*{20}{c}}1&2\\{ – 3}&0\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{ – 1}&{ – 2}\\{ – 7}&4\end{array}} \right]$

Obviously, $AB \ne BA$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.