3 and 4 .Determinants and Matrices
easy

यदि $A = \left[ {\begin{array}{*{20}{c}}\alpha &0\\1&1\end{array}} \right]$ और $B = \left[ {\begin{array}{*{20}{c}}1&0\\5&1\end{array}} \right]$, तो $\alpha $ के किस मान के लिये ${A^2} = B$ होगा

A

$1$

B

$-1$

C

$4$

D

कोई वास्तविक मान नहीं

(IIT-2003)

Solution

${A^2} = \left[ {\,\begin{array}{*{20}{c}}\alpha &0\\1&1\end{array}\,} \right]\,\left[ {\,\begin{array}{*{20}{c}}\alpha &0\\1&1\end{array}\,} \right] = \left[ {\,\begin{array}{*{20}{c}}{{\alpha ^2}}&0\\{\alpha  + 1}&1\end{array}\,} \right]$                  

 स्पष्टत: $\alpha$ कोई वास्तविक  मान नहीं है।

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.