3 and 4 .Determinants and Matrices
normal

If $n \ne 3k$ and 1, $\omega ,{\omega ^2}$ are the cube roots of unity, then $\Delta = \left| {\,\begin{array}{*{20}{c}}1&{{\omega ^n}}&{{\omega ^{2n}}}\\{{\omega ^{2n}}}&1&{{\omega ^n}}\\{{\omega ^n}}&{{\omega ^{2n}}}&1\end{array}\,} \right|$ has the value

A

$0$

B

$\omega $

C

${\omega ^2}$

D

$1$

Solution

(a) Applying ${C_1} \to {C_1} + {C_2} + {C_3}$, we get

$\Delta = \left| {\,\begin{array}{*{20}{c}}{1 + {\omega ^n} + {\omega ^{2n}}}&{{\omega ^n}}&{{\omega ^{2n}}}\\{1 + {\omega ^n} + {\omega ^{2n}}}&1&{{\omega ^n}}\\{1 + {\omega ^n} + {\omega ^{2n}}}&{{\omega ^{2n}}}&1\end{array}\,} \right| = \,\left| {\,\begin{array}{*{20}{c}}0&{{\omega ^n}}&{{\omega ^{2n}}}\\0&1&{{\omega ^n}}\\0&{{\omega ^{2n}}}&1\end{array}\,} \right|\, = \,\,0$,

$(\because \,{\text{  1}} + {\omega ^n} + {\omega ^{2n}} = 0$, if n is not multiple of $3$ ).

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.