3 and 4 .Determinants and Matrices
normal

यदि $n \ne 3k$ और 1,$\omega ,{\omega ^2}$ इकाई के घनमूल हैं, तो $\Delta  = \left| {\,\begin{array}{*{20}{c}}1&{{\omega ^n}}&{{\omega ^{2n}}}\\{{\omega ^{2n}}}&1&{{\omega ^n}}\\{{\omega ^n}}&{{\omega ^{2n}}}&1\end{array}\,} \right|$ का मान है

A

$0$

B

$\omega $

C

${\omega ^2}$

D

$1$

Solution

${C_1} \to {C_1} + {C_2} + {C_3}$ के द्वारा,

 $\Delta  = \left| {\,\begin{array}{*{20}{c}}{1 + {\omega ^n} + {\omega ^{2n}}}&{{\omega ^n}}&{{\omega ^{2n}}}\\{1 + {\omega ^n} + {\omega ^{2n}}}&1&{{\omega ^n}}\\{1 + {\omega ^n} + {\omega ^{2n}}}&{{\omega ^{2n}}}&1\end{array}\,} \right|  = \,\left| {\,\begin{array}{*{20}{c}}0&{{\omega ^n}}&{{\omega ^{2n}}}\\0&1&{{\omega ^n}}\\0&{{\omega ^{2n}}}&1\end{array}\,} \right|\, = \,\,0$,

$(\because \,{\text{  1}} + {\omega ^n} + {\omega ^{2n}} = 0$  यदि $n , 3 $ का गुणज नहीं है)।

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.