Let $\omega $ be a complex number such that  $2\omega + 1 = z$ where $z = \sqrt { - 3} $ . If $\left| {\begin{array}{*{20}{c}}1&1&1\\1&{ - {\omega ^2} - 1}&{{\omega ^2}}\\1&{{\omega ^2}}&{{\omega ^7}}\end{array}} \right| = 3k$ then $k$ is equal to :

  • [JEE MAIN 2017]
  • A

    $1$

  • B

    $-z$

  • C

    $z$

  • D

    $-1$

Similar Questions

For what value of $k$ to the following system of equations possess a non-trivial solution ?

$x + ky + 3z = 0$   ;    $3x + ky + 2z = 0$  ; $2x + 3y + 4z = 0$

If the lines $x + 2ay + a = 0$, $x + 3by + b = 0$  and $x + 4cy + c = 0$ are concurrent, then $a$, $b$ and $c$ are in

The set of all values of $\lambda$ for which the system of linear  $2{x_1} - 2{x_2} + {x_3} = \lambda {x_1}\;,\;2{x_1} - 3{x_2} + 2{x_3} = \lambda {x_2}\;\;,$$\;\; - {x_1} + 2{x_2} = \lambda {x_3}$ has a non-trivial solution

  • [JEE MAIN 2015]

The system of linear equations $x + \lambda y - z = 0,\lambda x - y - z = 0\;,\;x + y - \lambda z = 0$ has a non-trivial solution for:

  • [JEE MAIN 2016]

Consider the following system of equations : $x+2 y-3 z=a$ ; $2 x+6 y-11 z=b$ ; $x-2 y+7 z=c$    where $a , b$ and $c$ are real constants. Then the system of equations :

  • [JEE MAIN 2021]