3 and 4 .Determinants and Matrices
hard

Let $\omega $ be a complex number such that  $2\omega + 1 = z$ where $z = \sqrt { - 3} $ . If $\left| {\begin{array}{*{20}{c}}1&1&1\\1&{ - {\omega ^2} - 1}&{{\omega ^2}}\\1&{{\omega ^2}}&{{\omega ^7}}\end{array}} \right| = 3k$ then $k$ is equal to :

A

$1$

B

$-z$

C

$z$

D

$-1$

(JEE MAIN-2017)

Solution

Given $2\omega  + 1 = z;$

$z = \sqrt {3i} $

$ \Rightarrow \omega  = \frac{{\sqrt {3i}  – 1}}{2}$

$ \Rightarrow \omega $ is complex cube root of unity 

Applying ${R_1} \to {R_1} + {R_2} + {R_3}$

$ = \left| \begin{array}{l}
3\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,0\\
1\,\,\,\,\, – {\omega ^2} – 1\,\,\,\,\,\,\,\,\,\,\,\,\,{\omega ^2}\\
1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\omega ^2}\,\,\,\,\,\,\,\,\,\,\,\,\,\omega 
\end{array} \right|\,$

$ = 3\left( { – 1 – \omega  – \omega } \right) =  – 3\left( {1 + 2\omega } \right)\, =  – 3z$

$ \Rightarrow k =  – z$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.