3 and 4 .Determinants and Matrices
easy

If $A = \left[ {\begin{array}{*{20}{c}}a&0&0\\0&b&0\\0&0&c\end{array}} \right]$, then ${A^n} = $

A

$\left[ {\begin{array}{*{20}{c}}{na}&0&0\\0&{nb}&0\\0&0&{nc}\end{array}} \right]$

B

$\left[ {\begin{array}{*{20}{c}}a&0&0\\0&b&0\\0&0&c\end{array}} \right]$

C

$\left[ {\begin{array}{*{20}{c}}{{a^n}}&0&0\\0&{{b^n}}&0\\0&0&{{c^n}}\end{array}} \right]$

D

None of these

Solution

(c) Since ${A^2} = A.A = \left[ {\begin{array}{*{20}{c}}a&0&0\\0&b&0\\0&0&c\end{array}} \right]\,\left[ {\begin{array}{*{20}{c}}a&0&0\\0&b&0\\0&0&c\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{{a^2}}&0&0\\0&{{b^2}}&0\\0&0&{{c^2}}\end{array}} \right]$

And ${A^3} = \left[ {\begin{array}{*{20}{c}}{{a^3}}&0&0\\0&{{b^3}}&0\\0&0&{{c^3}}\end{array}} \right]$,….

==> ${A^n} = {A^{n – 1}}.A = \left[ {\begin{array}{*{20}{c}}{{a^{n – 1}}}&0&0\\0&{{b^{n – 1}}}&0\\0&0&{{c^{n – 1}}}\end{array}} \right]{\rm{ }}\left[ {\begin{array}{*{20}{c}}a&0&0\\0&b&0\\0&0&c\end{array}} \right]$

$ = \left[ {\begin{array}{*{20}{c}}{{a^n}}&0&0\\0&{{b^n}}&0\\0&0&{{c^n}}\end{array}} \right]$.

Note: Students should remember this question as a formula.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.