- Home
- Standard 11
- Mathematics
જો $\theta $ એ બીજા ચરણમાં હોય તો $\sqrt {\left( {\frac{{1 - \sin \theta }}{{1 + \sin \theta }}} \right)} + \sqrt {\left( {\frac{{1 + \sin \theta }}{{1 - \sin \theta }}} \right)} $ ની કિમત મેળવો.
$2\sec \theta $
$ - 2\sec \theta $
$2{\rm{cosec}} \, \theta $
એકપણ નહિ.
Solution
(b) $\sqrt {\left( {\frac{{1 – \sin \theta }}{{1 + \sin \theta }}} \right)} + \sqrt {\left( {\frac{{1 + \sin \theta }}{{1 – \sin \theta }}} \right)} $
is the sum of two positive quantities and hence the result must be positive.
But for $\frac{\pi }{2} < \theta < \pi ,$
we have the sum equal to $\frac{{1 – \sin \theta + 1 + \sin \theta }}{{\sqrt {1 – {{\sin }^2}\theta } }} = \frac{2}{{\cos \theta }};$
which is negative.
($\because$ $\cos \theta $ is negative for $\theta$ lying in $2^{nd}$ quadrant).
So the required positive value $ = \frac{{ – 2}}{{\cos \theta }} = – 2\,\sec \theta ,\,\left( {\frac{\pi }{2} < \theta < \pi } \right)$.