3.Trigonometrical Ratios, Functions and Identities
medium

If $\cos \theta - \sin \theta = \sqrt 2 \sin \theta ,$ then $\cos \theta + \sin \theta $ is equal to

A

$\sqrt 2 \cos \theta $

B

$\sqrt 2 \sin \theta $

C

$2\cos \theta $

D

$ - \sqrt 2 \cos \theta $

Solution

(a) We have $\cos \theta – \sin \theta = \sqrt 2 \,\sin \theta $

$ \Rightarrow \,\cos \theta = (\sqrt 2 + 1)\,\sin \theta \, $

$\Rightarrow \,(\sqrt 2 – 1)\cos \theta = \sin \theta $

$ \Rightarrow \,\sqrt 2 \,\cos \theta – \cos \theta = \sin \theta $

$\Rightarrow \,\sin \theta + \cos \theta = \sqrt 2 \,\cos \theta .$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.