3.Trigonometrical Ratios, Functions and Identities
easy

If $(1 + \sin A)(1 + \sin B)(1 + \sin C)$$ = (1 - \sin A)(1 - \sin B)(1 - \sin C),$ then each side is equal to

A

$ \pm \sin A\sin B\sin C$

B

$ \pm \cos A\cos B\cos C$

C

$ \pm \sin A\cos B\cos C$

D

$ \pm \cos A\sin B\sin C$

Solution

(b) Multiplying both sides by $(1 – \sin A)(1 – \sin B)(1 – \sin C)$, 

we have, $(1 – {\sin ^2}A)(1 – {\sin ^2}B)(1 – {\sin ^2}C)$ 

$ = {(1 – \sin A)^2}{(1 – \sin B)^2}{(1 – \sin C)^2}$

==> $(1 – \sin A)(1 – \sin B)(1 – \sin C) = \pm \cos A\cos B\cos C$

Similarly, $(1 + \sin A)(1 + \sin B)(1 + \sin C) = \pm \cos A\cos B\cos C$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.