3.Trigonometrical Ratios, Functions and Identities
medium

यदि $\tan \theta  - \cot \theta  = a$ व $\sin \theta  + \cos \theta  = b,$ तो ${({b^2} - 1)^2}({a^2} + 4)$ बराबर होगा

A

$2$

B

$-4$

C

$± 4$

D

$4$

Solution

दिया है $\tan \theta  – \cot \theta  = a$…..$(i)$

एवं $\sin \theta  + \cos \theta  = b$…..$(ii)$

अब ${({b^2} – 1)^2}({a^2} + 4)$

$ = {\{ {(\sin \theta  + \cos \theta )^2} – 1\} ^2}\{ {(\tan \theta  – \cot \theta )^2} + 4\} $

$ = {[1 + \sin 2\theta  – 1]^2}[{\tan ^2}\theta  + {\cot ^2}\theta  – 2 + 4]$

$ = {\sin ^2}2\theta ({\rm{cose}}{{\rm{c}}^2}\theta  + {\sec ^2}\theta )$

$ = 4{\sin ^2}\theta {\cos ^2}\theta \left[ {\frac{1}{{{{\sin }^2}\theta }} + \frac{1}{{{{\cos }^2}\theta }}} \right] = 4$.

ट्रिक : व्यंजक ${({b^2} – 1)^2}({a^2} + 4)$ का मान $\theta $ से स्वतंत्र है इसलिए $\theta $ का कोई उपयुक्त मान रखने पर,

माना $\theta  = 45^\circ $,

अत: $a = 0,\;b = \sqrt 2 $ ताकि ${[{(\sqrt 2 )^2} – 1]^2}$ $({0^2} + 4) = 4.$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.