3.Trigonometrical Ratios, Functions and Identities
easy

निम्नलिखित को सिद्ध कीजिए

$\frac{\cos (\pi+x) \cos (-x)}{\sin (\pi-x) \cos \left(\frac{\pi}{2}+x\right)}=\cot ^{2} x$

Option A
Option B
Option C
Option D

Solution

$L.H.S.$ $=\frac{\cos (\pi+x) \cos (-x)}{\sin (\pi-x) \cos \left(\frac{\pi}{2}+x\right)}$

$=\frac{[-\cos x][\cos x]}{(\sin x)(-\sin x)}$

$=\frac{-\cos ^{2} x}{-\sin ^{2} x}$

$=\cot ^{2} x$

$= R . H.S$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.