If $a\tan \theta = b$, then $a\cos 2\theta + b\sin 2\theta = $
$a$
$b$
$ - a$
$ - b$
If $\alpha$, $\beta$,$\gamma$ are positive number such that $\alpha + \beta = \pi$ and $\beta + \gamma = \alpha$, then $tan\ \alpha$ is equal to - (where $\gamma \ne n\pi ,n \in I$ )
If $\sin 2\theta + \sin 2\phi = 1/2$ and $\cos 2\theta + \cos 2\phi = 3/2$, then ${\cos ^2}(\theta - \phi ) = $
The value of $2 \sin(\frac{\pi}{8}) \sin (\frac{2 \pi}{8}) \sin (\frac{3 \pi}{8}) \sin (\frac{5 \pi}{8}) \sin (\frac{6 \pi}{8}) \sin (\frac{7 \pi}{8})$ is:
If $x\, sin \theta = y\, sin \, \left( {\theta \,\, + \,\,\frac{{2\,\pi }}{3}} \right) = z\, sin \, \left( {\theta \,\, + \,\,\frac{{4\,\pi }}{3}} \right)$ then :
$\cos \alpha .\sin (\beta - \gamma ) + \cos \beta .\sin (\gamma - \alpha ) + \cos \gamma .\sin (\alpha - \beta ) = $