- Home
- Standard 11
- Mathematics
3.Trigonometrical Ratios, Functions and Identities
easy
If $a\tan \theta = b$, then $a\cos 2\theta + b\sin 2\theta = $
A
$a$
B
$b$
C
$ - a$
D
$ - b$
Solution
(a) Given that $\tan \theta = \frac{b}{a}$.
Now, $a\cos 2\theta + b\sin 2\theta $
$= a\left( {\frac{{1 – {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}} \right) + b\left( {\frac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }}} \right)$
Putting $\tan \theta = \frac{b}{a}$, we get
$ = a\left( {\frac{{1 – \frac{{{b^2}}}{{{a^2}}}}}{{1 + \frac{{{b^2}}}{{{a^2}}}}}} \right) + b\left( {\frac{{2\frac{b}{a}}}{{1 + \frac{{{b^2}}}{{{a^2}}}}}} \right) $
$= a\left( {\frac{{{a^2} – {b^2}}}{{{a^2} + {b^2}}}} \right) + b\left( {\frac{{2ba}}{{{a^2} + {b^2}}}} \right)$
$ = \frac{1}{{({a^2} + {b^2})}}\{ {a^3} – a{b^2} + 2a{b^2}\} $
$= \frac{{a({a^2} + {b^2})}}{{{a^2} + {b^2}}} = a$.
Standard 11
Mathematics